现在多了一个变量 j,既然算 i 的贡献不方便,我们就想办法算 j 的贡献。因此想办法搞一个和 j 有关的贡献式。这里有另一个家喻户晓的变换方法,笔者概括为限制转移。具体来说,在上面的和式中 n 限制 i 的上界,而 i 限制 j 的上界。为了搞 j,就先把 j 放到贡献的式子里,于是我们交换一下 i,j 的求和算子,强制用 n 限制 j 的上界。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int P = 998244353;
int i2 = 499122177, i6 = 166374059;
struct data {
data() { f = g = h = 0; }
int f, g, h;
}; // 三个函数打包
data calc(int n, int a, int b, int c) {
int ac = a / c, bc = b / c, m = (a * n + b) / c, n1 = n + 1, n21 = n * 2 + 1;
data d;
if (a == 0) { // 迭代到最底层
d.f = bc * n1 % P;
d.g = bc * n % P * n1 % P * i2 % P;
d.h = bc * bc % P * n1 % P;
return d;
}
if (a >= c || b >= c) { // 取模
d.f = n * n1 % P * i2 % P * ac % P + bc * n1 % P;
d.g = ac * n % P * n1 % P * n21 % P * i6 % P + bc * n % P * n1 % P * i2 % P;
d.h = ac * ac % P * n % P * n1 % P * n21 % P * i6 % P +
bc * bc % P * n1 % P + ac * bc % P * n % P * n1 % P;
d.f %= P, d.g %= P, d.h %= P;
data e = calc(n, a % c, b % c, c); // 迭代
d.h += e.h + 2 * bc % P * e.f % P + 2 * ac % P * e.g % P;
d.g += e.g, d.f += e.f;
d.f %= P, d.g %= P, d.h %= P;
return d;
}
data e = calc(m - 1, c, c - b - 1, a);
d.f = n * m % P - e.f, d.f = (d.f % P + P) % P;
d.g = m * n % P * n1 % P - e.h - e.f, d.g = (d.g * i2 % P + P) % P;
d.h = n * m % P * (m + 1) % P - 2 * e.g - 2 * e.f - d.f;
d.h = (d.h % P + P) % P;
return d;
}
int T, n, a, b, c;
signed main() {
scanf("%lld", &T);
while (T--) {
scanf("%lld%lld%lld%lld", &n, &a, &b, &c);
data ans = calc(n, a, b, c);
printf("%lld %lld %lld\n", ans.f, ans.h, ans.g);
}
return 0;
}
buildLast update and/or translate time of this article,Check the history editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github peopleContributor of this article sshwy, FFjet translateTranslator of this article Visit the original article! copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.