Sieve of Eratosthenes
素数筛法¶
如果我们想要知道小于等于
一个自然的想法是对于小于等于
埃拉托斯特尼筛法¶
考虑这样一件事情:如果
如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。
int Eratosthenes(int n) {
int p = 0;
for (int i = 0; i <= n; ++i) is_prime[i] = 1;
is_prime[0] = is_prime[1] = 0;
for (int i = 2; i <= n; ++i) {
if (is_prime[i]) {
prime[p++] = i; // prime[p]是i,后置自增运算代表当前素数数量
if ((long long)i * i <= n)
for (int j = i * i; j <= n; j += i)
// 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
// 的倍数开始,提高了运行速度
is_prime[j] = 0; // 是i的倍数的均不是素数
}
}
return p;
}
以上为 Eratosthenes 筛法(埃拉托斯特尼筛法,简称埃氏筛法),时间复杂度是
现在我们就来看看推导过程:
如果每一次对数组的操作花费 1 个单位时间,则时间复杂度为:
其中
所以 Eratosthenes 筛法 的时间复杂度为
根据
当然,上面的做法效率仍然不够高效,应用下面几种方法可以稍微提高算法的执行效率。
筛至平方根¶
显然,要找到直到
int n;
vector<char> is_prime(n + 1, true);
is_prime[0] = is_prime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (is_prime[i]) {
for (int j = i * i; j <= n; j += i) is_prime[j] = false;
}
}
这种优化不会影响渐进时间复杂度,实际上重复以上证明,我们将得到
只筛奇数¶
因为除 2 以外的偶数都是合数,所以我们可以直接跳过它们,只用关心奇数就好。
首先,这样做能让我们内存需求减半;其次,所需的操作大约也减半。
减少内存的占用¶
我们注意到筛法只需要
但是,这种称为 位级压缩 的方法会使这些位的操作复杂化。任何位上的读写操作都需要多次算术运算,最终会使算法变慢。
因此,这种方法只有在
值得一提的是,存在自动执行位级压缩的数据结构,如 C++ 中的 vector<bool>
和 bitset<>
。
分块筛选¶
由优化“筛至平方根”可知,不需要一直保留整个 is_prime[1...n]
数组。为了进行筛选,只保留到 prime[1...sqrt(n)]
。并将整个范围分成块,每个块分别进行筛选。这样,我们就不必同时在内存中保留多个块,而且 CPU 可以更好地处理缓存。
设
值得注意的是,我们在处理第一个数字时需要稍微修改一下策略:首先,应保留
以下实现使用块筛选来计算小于等于
int count_primes(int n) {
const int S = 10000;
vector<int> primes;
int nsqrt = sqrt(n);
vector<char> is_prime(nsqrt + 1, true);
for (int i = 2; i <= nsqrt; i++) {
if (is_prime[i]) {
primes.push_back(i);
for (int j = i * i; j <= nsqrt; j += i) is_prime[j] = false;
}
}
int result = 0;
vector<char> block(S);
for (int k = 0; k * S <= n; k++) {
fill(block.begin(), block.end(), true);
int start = k * S;
for (int p : primes) {
int start_idx = (start + p - 1) / p;
int j = max(start_idx, p) * p - start;
for (; j < S; j += p) block[j] = false;
}
if (k == 0) block[0] = block[1] = false;
for (int i = 0; i < S && start + i <= n; i++) {
if (block[i]) result++;
}
}
return result;
}
分块筛分的渐进时间复杂度与埃氏筛法是一样的(除非块非常小),但是所需的内存将缩小为
块大小
线性筛法¶
埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。
如果能让每个合数都只被标记一次,那么时间复杂度就可以降到
void init() {
phi[1] = 1;
for (int i = 2; i < MAXN; ++i) {
if (!vis[i]) {
phi[i] = i - 1;
pri[cnt++] = i;
}
for (int j = 0; j < cnt; ++j) {
if (1ll * i * pri[j] >= MAXN) break;
vis[i * pri[j]] = 1;
if (i % pri[j]) {
phi[i * pri[j]] = phi[i] * (pri[j] - 1);
} else {
// i % pri[j] == 0
// 换言之,i 之前被 pri[j] 筛过了
// 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定也是
// pri[j] 的倍数 它们都被筛过了,就不需要再筛了,所以这里直接 break
// 掉就好了
phi[i * pri[j]] = phi[i] * pri[j];
break;
}
}
}
}
上面代码中的
上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)。
Note
注意到筛法求素数的同时也得到了每个数的最小质因子
筛法求欧拉函数¶
注意到在线性筛中,每一个合数都是被最小的质因子筛掉。比如设
观察线性筛的过程,我们还需要处理两个部分,下面对
如果
那如果
void pre() {
memset(is_prime, 1, sizeof(is_prime));
int cnt = 0;
is_prime[1] = 0;
phi[1] = 1;
for (int i = 2; i <= 5000000; i++) {
if (is_prime[i]) {
prime[++cnt] = i;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt && i * prime[j] <= 5000000; j++) {
is_prime[i * prime[j]] = 0;
if (i % prime[j])
phi[i * prime[j]] = phi[i] * phi[prime[j]];
else {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
}
}
}
筛法求莫比乌斯函数¶
线性筛¶
void pre() {
mu[1] = 1;
for (int i = 2; i <= 1e7; ++i) {
if (!v[i]) mu[i] = -1, p[++tot] = i;
for (int j = 1; j <= tot && i <= 1e7 / p[j]; ++j) {
v[i * p[j]] = 1;
if (i % p[j] == 0) {
mu[i * p[j]] = 0;
break;
}
mu[i * p[j]] = -mu[i];
}
}
筛法求约数个数¶
用
约数个数定理¶
定理:若
证明:我们知道
实现¶
因为
void pre() {
d[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, d[i] = 2, num[i] = 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
num[i * p[j]] = num[i] + 1;
d[i * p[j]] = d[i] / num[i * p[j]] * (num[i * p[j]] + 1);
break;
} else {
num[i * p[j]] = 1;
d[i * p[j]] = d[i] * 2;
}
}
}
}
筛法求约数和¶
void pre() {
g[1] = f[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!v[i]) v[i] = 1, p[++tot] = i, g[i] = i + 1, f[i] = i + 1;
for (int j = 1; j <= tot && i <= n / p[j]; ++j) {
v[p[j] * i] = 1;
if (i % p[j] == 0) {
g[i * p[j]] = g[i] * p[j] + 1;
f[i * p[j]] = f[i] / g[i] * g[i * p[j]];
break;
} else {
f[i * p[j]] = f[i] * f[p[j]];
g[i * p[j]] = 1 + p[j];
}
}
}
for (int i = 1; i <= n; ++i) f[i] = (f[i - 1] + f[i]) % Mod;
}
其他线性函数¶
本节部分内容译自博文 Решето Эратосфена 与其英文翻译版 Sieve of Eratosthenes。其中俄文版版权协议为 Public Domain + Leave a Link;英文版版权协议为 CC-BY-SA 4.0。
buildLast update and/or translate time of this article,Check the history
editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github
peopleContributor of this article inkydragon, TravorLZH
translateTranslator of this article Visit the original article!
copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.