Splay
本页面将简要介绍如何用 Splay 维护二叉查找树。
简介¶
Splay 是一种二叉查找树,它通过不断将某个节点旋转到根节点,使得整棵树仍然满足二叉查找树的性质,并且保持平衡而不至于退化为链。它由 Daniel Sleator 和 Robert Tarjan 发明。
结构¶
二叉查找树的性质¶
首先肯定是一棵二叉树!
能够在这棵树上查找某个值的性质:左子树任意节点的值
节点维护信息¶
rt | tot | fa[i] | ch[i][0/1] | val[i] | cnt[i] | sz[i] |
---|---|---|---|---|---|---|
根节点编号 | 节点个数 | 父亲 | 左右儿子编号 | 节点权值 | 权值出现次数 | 子树大小 |
操作¶
基本操作¶
maintain(x)
:在改变节点位置后,将节点x \text{size} get(x)
:判断节点x clear(x)
:销毁节点x
void maintain(int x) { sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + cnt[x]; }
bool get(int x) { return x == ch[fa[x]][1]; }
void clear(int x) { ch[x][0] = ch[x][1] = fa[x] = val[x] = sz[x] = cnt[x] = 0; }
旋转操作¶
为了使 Splay 保持平衡而进行旋转操作,旋转的本质是将某个节点上移一个位置。
旋转需要保证:
- 整棵 Splay 的中序遍历不变(不能破坏二叉查找树的性质)。
- 受影响的节点维护的信息依然正确有效。
root
必须指向旋转后的根节点。
在 Splay 中旋转分为两种:左旋和右旋。
具体分析旋转步骤(假设需要旋转的节点为
- 将
y x x x y ch[y][0]=ch[x][1]; fa[ch[x][1]]=y;
- 将
x y y x ch[x][chk^1]=y; fa[y]=x;
- 如果原来的
y z z y x x z fa[x]=z; if(z) ch[z][y==ch[z][1]]=x;
void rotate(int x) {
int y = fa[x], z = fa[y], chk = get(x);
ch[y][chk] = ch[x][chk ^ 1];
if (ch[x][chk ^ 1]) fa[ch[x][chk ^ 1]] = y;
ch[x][chk ^ 1] = y;
fa[y] = x;
fa[x] = z;
if (z) ch[z][y == ch[z][1]] = x;
maintain(y);
maintain(x);
}
Splay 操作¶
Splay 规定:每访问一个节点后都要强制将其旋转到根节点。此时旋转操作具体分为
- 如果
x x 1,2 - 如果
x x x 3,4 - 如果
x x x 5,6
Tip
请读者尝试自行模拟
void splay(int x) {
for (int f = fa[x]; f = fa[x], f; rotate(x))
if (fa[f]) rotate(get(x) == get(f) ? f : x);
rt = x;
}
插入操作¶
插入操作是一个比较复杂的过程,具体步骤如下(假设插入的值为
- 如果树空了,则直接插入根并退出。
- 如果当前节点的权值等于
k - 否则按照二叉查找树的性质向下找,找到空节点就插入即可(请不要忘记 Splay 操作)。
void ins(int k) {
if (!rt) {
val[++tot] = k;
cnt[tot]++;
rt = tot;
maintain(rt);
return;
}
int cur = rt, f = 0;
while (1) {
if (val[cur] == k) {
cnt[cur]++;
maintain(cur);
maintain(f);
splay(cur);
break;
}
f = cur;
cur = ch[cur][val[cur] < k];
if (!cur) {
val[++tot] = k;
cnt[tot]++;
fa[tot] = f;
ch[f][val[f] < k] = tot;
maintain(tot);
maintain(f);
splay(tot);
break;
}
}
}
查询 x 的排名¶
根据二叉查找树的定义和性质,显然可以按照以下步骤查询
- 如果
x - 如果
x size cnt - 如果
x 1
注意最后需要进行 Splay 操作。
int rk(int k) {
int res = 0, cur = rt;
while (1) {
if (k < val[cur]) {
cur = ch[cur][0];
} else {
res += sz[ch[cur][0]];
if (k == val[cur]) {
splay(cur);
return res + 1;
}
res += cnt[cur];
cur = ch[cur][1];
}
}
}
查询排名 x 的数¶
设
- 如果左子树非空且剩余排名
k size - 否则将
k k 0
int kth(int k) {
int cur = rt;
while (1) {
if (ch[cur][0] && k <= sz[ch[cur][0]]) {
cur = ch[cur][0];
} else {
k -= cnt[cur] + sz[ch[cur][0]];
if (k <= 0) {
splay(cur);
return val[cur];
}
cur = ch[cur][1];
}
}
}
查询前驱¶
前驱定义为小于
int pre() {
int cur = ch[rt][0];
if (!cur) return cur;
while (ch[cur][1]) cur = ch[cur][1];
splay(cur);
return cur;
}
查询后继¶
后继定义为大于
int nxt() {
int cur = ch[rt][1];
if (!cur) return cur;
while (ch[cur][0]) cur = ch[cur][0];
splay(cur);
return cur;
}
合并两棵树¶
合并两棵 Splay 树,设两棵树的根节点分别为
- 如果
x y - 否则将
x \operatorname{Splay} y
删除操作¶
删除操作也是一个比较复杂的操作,具体步骤如下:
首先将
- 如果
cnt[x]>1 x cnt[x] 1 - 否则,合并它的左右两棵子树即可。
void del(int k) {
rk(k);
if (cnt[rt] > 1) {
cnt[rt]--;
maintain(rt);
return;
}
if (!ch[rt][0] && !ch[rt][1]) {
clear(rt);
rt = 0;
return;
}
if (!ch[rt][0]) {
int cur = rt;
rt = ch[rt][1];
fa[rt] = 0;
clear(cur);
return;
}
if (!ch[rt][1]) {
int cur = rt;
rt = ch[rt][0];
fa[rt] = 0;
clear(cur);
return;
}
int cur = rt, x = pre();
fa[ch[cur][1]] = x;
ch[x][1] = ch[cur][1];
clear(cur);
maintain(rt);
}
代码实现¶
#include <cstdio>
const int N = 100005;
int rt, tot, fa[N], ch[N][2], val[N], cnt[N], sz[N];
struct Splay {
void maintain(int x) { sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + cnt[x]; }
bool get(int x) { return x == ch[fa[x]][1]; }
void clear(int x) {
ch[x][0] = ch[x][1] = fa[x] = val[x] = sz[x] = cnt[x] = 0;
}
void rotate(int x) {
int y = fa[x], z = fa[y], chk = get(x);
ch[y][chk] = ch[x][chk ^ 1];
if (ch[x][chk ^ 1]) fa[ch[x][chk ^ 1]] = y;
ch[x][chk ^ 1] = y;
fa[y] = x;
fa[x] = z;
if (z) ch[z][y == ch[z][1]] = x;
maintain(x);
maintain(y);
}
void splay(int x) {
for (int f = fa[x]; f = fa[x], f; rotate(x))
if (fa[f]) rotate(get(x) == get(f) ? f : x);
rt = x;
}
void ins(int k) {
if (!rt) {
val[++tot] = k;
cnt[tot]++;
rt = tot;
maintain(rt);
return;
}
int cur = rt, f = 0;
while (1) {
if (val[cur] == k) {
cnt[cur]++;
maintain(cur);
maintain(f);
splay(cur);
break;
}
f = cur;
cur = ch[cur][val[cur] < k];
if (!cur) {
val[++tot] = k;
cnt[tot]++;
fa[tot] = f;
ch[f][val[f] < k] = tot;
maintain(tot);
maintain(f);
splay(tot);
break;
}
}
}
int rk(int k) {
int res = 0, cur = rt;
while (1) {
if (k < val[cur]) {
cur = ch[cur][0];
} else {
res += sz[ch[cur][0]];
if (k == val[cur]) {
splay(cur);
return res + 1;
}
res += cnt[cur];
cur = ch[cur][1];
}
}
}
int kth(int k) {
int cur = rt;
while (1) {
if (ch[cur][0] && k <= sz[ch[cur][0]]) {
cur = ch[cur][0];
} else {
k -= cnt[cur] + sz[ch[cur][0]];
if (k <= 0) {
splay(cur);
return val[cur];
}
cur = ch[cur][1];
}
}
}
int pre() {
int cur = ch[rt][0];
if (!cur) return cur;
while (ch[cur][1]) cur = ch[cur][1];
splay(cur);
return cur;
}
int nxt() {
int cur = ch[rt][1];
if (!cur) return cur;
while (ch[cur][0]) cur = ch[cur][0];
splay(cur);
return cur;
}
void del(int k) {
rk(k);
if (cnt[rt] > 1) {
cnt[rt]--;
maintain(rt);
return;
}
if (!ch[rt][0] && !ch[rt][1]) {
clear(rt);
rt = 0;
return;
}
if (!ch[rt][0]) {
int cur = rt;
rt = ch[rt][1];
fa[rt] = 0;
clear(cur);
return;
}
if (!ch[rt][1]) {
int cur = rt;
rt = ch[rt][0];
fa[rt] = 0;
clear(cur);
return;
}
int cur = rt;
int x = pre();
fa[ch[cur][1]] = x;
ch[x][1] = ch[cur][1];
clear(cur);
maintain(rt);
}
} tree;
int main() {
int n, opt, x;
for (scanf("%d", &n); n; --n) {
scanf("%d%d", &opt, &x);
if (opt == 1)
tree.ins(x);
else if (opt == 2)
tree.del(x);
else if (opt == 3)
printf("%d\n", tree.rk(x));
else if (opt == 4)
printf("%d\n", tree.kth(x));
else if (opt == 5)
tree.ins(x), printf("%d\n", val[tree.pre()]), tree.del(x);
else
tree.ins(x), printf("%d\n", val[tree.nxt()]), tree.del(x);
}
return 0;
}
例题¶
以下题目都是裸的 Splay 维护二叉查找树。
习题¶
参考资料与注释¶
本文部分内容引用于 algocode 算法博客,特别鸣谢!
buildLast update and/or translate time of this article,Check the history
editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github
peopleContributor of this article OI-wiki
translateTranslator of this article Visit the original article!
copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.