State Compression DP

学习状压 dp 之前,请确认你已经完成了 动态规划基础 部分内容的学习。

(同时建议学习 位运算 部分的内容)

状压 DP 简介

状压 dp 是动态规划的一种,通过将状态压缩为整数来达到优化转移的目的。

例题

「SCOI2005」互不侵犯

N\times N 的棋盘里面放 K 个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 8 个格子。

我们用 f(i,j,l) 表示只考虑前 i 行,第 i 行按照编号为 j 的状态放置国王,且已经放置 l 个国王时的方案数。

对于编号为 j 的状态,我们用二进制整数 sit(j) 表示国王的放置情况, sit(j) 的某个二进制位为 0 表示对应位置不放国王,为 1 表示在对应位置上放置国王;用 sta(j) 表示该状态的国王个数,即二进制数 sit(j) 1 的个数。例如,如下图所示的状态可用二进制数 100101 来表示(棋盘左边对应二进制低位),则有 sit(j)=100101_{(2)}=37, sta(j)=3

我们需要在刚开始的时候枚举出所有的合法状态(即排除同一行内两个国王相邻的不合法情况),并计算这些状态的 sit(j) sta(j)

设上一行的状态编号为 x ,在保证当前行和上一行不冲突的前提下,枚举所有可能的 x 进行转移,转移方程:

f(i,j,l) = \sum f(i-1,x,l-sta(j))
参考代码
#include <algorithm>
#include <iostream>
using namespace std;
long long sta[2005], sit[2005], f[15][2005][105];
int n, k, cnt;
void dfs(int x, int num, int cur) {
  if (cur >= n) {  // 有新的合法状态
    sit[++cnt] = x;
    sta[cnt] = num;
    return;
  }
  dfs(x, num, cur + 1);  // cur位置不放国王
  dfs(x + (1 << cur), num + 1,
      cur + 2);  // cur位置放国王,与它相邻的位置不能再放国王
}
bool compatible(int j, int x) {
  if (sit[j] & sit[x]) return false;
  if ((sit[j] << 1) & sit[x]) return false;
  if (sit[j] & (sit[x] << 1)) return false;
  return true;
}
int main() {
  cin >> n >> k;
  dfs(0, 0, 0);  // 先预处理一行的所有合法状态
  for (int j = 1; j <= cnt; j++) f[1][j][sta[j]] = 1;
  for (int i = 2; i <= n; i++)
    for (int j = 1; j <= cnt; j++)
      for (int x = 1; x <= cnt; x++) {
        if (!compatible(j, x)) continue;  // 排除不合法转移
        for (int l = sta[j]; l <= k; l++) f[i][j][l] += f[i - 1][x][l - sta[j]];
      }
  long long ans = 0;
  for (int i = 1; i <= cnt; i++) ans += f[n][i][k];  // 累加答案
  cout << ans << endl;
  return 0;
}

习题

NOI2001 炮兵阵地

「USACO06NOV」玉米田 Corn Fields

九省联考 2018 一双木棋

UVA10817 校长的烦恼 Headmaster's Headache

UVA1252 20 个问题 Twenty Questions


Comments