Storage
在 OI 中,想要对图进行操作,就需要先学习图的存储方式。
约定¶
本文默认读者已阅读并了解了 图论相关概念 中的基础内容,如果在阅读中遇到困难,也可以在 图论相关概念 中进行查阅。
在本文中,用
直接存边¶
方法¶
使用一个数组来存边,数组中的每个元素都包含一条边的起点与终点(带边权的图还包含边权)。(或者使用多个数组分别存起点,终点和边权。)
参考代码
#include <iostream>
#include <vector>
using namespace std;
struct Edge {
int u, v;
};
int n, m;
vector<Edge> e;
vector<bool> vis;
bool find_edge(int u, int v) {
for (int i = 1; i <= m; ++i) {
if (e[i].u == u && e[i].v == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 1; i <= m; ++i) {
if (e[i].u == u) {
dfs(e[i].v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
e.resize(m + 1);
for (int i = 1; i <= m; ++i) cin >> e[i].u >> e[i].v;
return 0;
}
复杂度¶
查询是否存在某条边:
遍历一个点的所有出边:
遍历整张图:
空间复杂度:
应用¶
由于直接存边的遍历效率低下,一般不用于遍历图。
在 Kruskal 算法 中,由于需要将边按边权排序,需要直接存边。
在有的题目中,需要多次建图(如建一遍原图,建一遍反图),此时既可以使用多个其它数据结构来同时存储多张图,也可以将边直接存下来,需要重新建图时利用直接存下的边来建图。
邻接矩阵¶
方法¶
使用一个二维数组 adj
来存边,其中 adj[u][v]
为 1 表示存在 adj[u][v]
中存储
参考代码
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<bool> > adj;
bool find_edge(int u, int v) { return adj[u][v]; }
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int v = 1; v <= n; ++v) {
if (adj[u][v]) {
dfs(v);
}
}
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
adj.resize(n + 1, vector<bool>(n + 1, false));
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u][v] = true;
}
return 0;
}
复杂度¶
查询是否存在某条边:
遍历一个点的所有出边:
遍历整张图:
空间复杂度:
应用¶
邻接矩阵只适用于没有重边(或重边可以忽略)的情况。
其最显著的优点是可以
由于邻接矩阵在稀疏图上效率很低(尤其是在点数较多的图上,空间无法承受),所以一般只会在稠密图上使用邻接矩阵。
邻接表¶
方法¶
使用一个支持动态增加元素的数据结构构成的数组,如 vector<int> adj[n + 1]
来存边,其中 adj[u]
存储的是点
参考代码
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int> > adj;
bool find_edge(int u, int v) {
for (int i = 0; i < adj[u].size(); ++i) {
if (adj[u][i] == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = 0; i < adj[u].size(); ++i) dfs(adj[u][i]);
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
adj.resize(n + 1);
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
adj[u].push_back(v);
}
return 0;
}
复杂度¶
查询是否存在
遍历点
遍历整张图:
空间复杂度:
应用¶
存各种图都很适合,除非有特殊需求(如需要快速查询一条边是否存在,且点数较少,可以使用邻接矩阵)。
尤其适用于需要对一个点的所有出边进行排序的场合。
链式前向星¶
方法¶
本质上是用链表实现的邻接表,核心代码如下:
// head[u] 和 cnt 的初始值都为 -1
void add(int u, int v) {
nxt[++cnt] = head[u]; // 当前边的后继
head[u] = cnt; // 起点 u 的第一条边
to[cnt] = v; // 当前边的终点
}
// 遍历 u 的出边
for (int i = head[u]; ~i; i = nxt[i]) { // ~i 表示 i != -1
int v = to[i];
}
参考代码
#include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<int> head, nxt, to;
void add(int u, int v) {
nxt.push_back(head[u]);
head[u] = to.size();
to.push_back(v);
}
bool find_edge(int u, int v) {
for (int i = head[u]; ~i; i = nxt[i]) { // ~i 表示 i != -1
if (to[i] == v) {
return true;
}
}
return false;
}
void dfs(int u) {
if (vis[u]) return;
vis[u] = true;
for (int i = head[u]; ~i; i = nxt[i]) dfs(to[i]);
}
int main() {
cin >> n >> m;
vis.resize(n + 1, false);
head.resize(n + 1, -1);
for (int i = 1; i <= m; ++i) {
int u, v;
cin >> u >> v;
add(u, v);
}
return 0;
}
复杂度¶
查询是否存在
遍历点
遍历整张图:
空间复杂度:
应用¶
存各种图都很适合,但不能快速查询一条边是否存在,也不能方便地对一个点的出边进行排序。
优点是边是带编号的,有时会非常有用,而且如果 cnt
的初始值为奇数,存双向边时 i ^ 1
即是 i
的反边(常用于 网络流 )。
buildLast update and/or translate time of this article,Check the history
editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github
peopleContributor of this article Ir1d, sshwy, Xeonacid, partychicken, Anguei, HeRaNO
translateTranslator of this article Visit the original article!
copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.