强连通分量
简介¶
在阅读下列内容之前,请务必了解 图论相关概念 中的基础部分。
强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通。
强连通分量(Strongly Connected Components,SCC)的定义是:极大的强连通子图。
这里想要介绍的是如何来求强连通分量。
Tarjan 算法¶
Robert E. Tarjan (1948~) 美国人。
Tarjan 发明了很多算法结构。光 Tarjan 算法就有很多,比如求各种连通分量的 Tarjan 算法,求 LCA(Lowest Common Ancestor,最近公共祖先)的 Tarjan 算法。并查集、Splay、Toptree 也是 Tarjan 发明的。
我们这里要介绍的是在有向图中求强连通分量的 Tarjan 算法。
另外,Tarjan 的名字 j
不发音,中文译为塔扬。
DFS 生成树¶
在介绍该算法之前,先来了解 DFS 生成树 ,我们以下面的有向图为例:
有向图的 DFS 生成树主要有 4 种边(不一定全部出现):
- 树边(tree edge):绿色边,每次搜索找到一个还没有访问过的结点的时候就形成了一条树边。
- 反祖边(back edge):黄色边,也被叫做回边,即指向祖先结点的边。
- 横叉边(cross edge):红色边,它主要是在搜索的时候遇到了一个已经访问过的结点,但是这个结点 并不是 当前结点的祖先时形成的。
- 前向边(forward edge):蓝色边,它是在搜索的时候遇到子树中的结点的时候形成的。
我们考虑 DFS 生成树与强连通分量之间的关系。
如果结点
反证法:假设有个结点
Tarjan 算法求强连通分量¶
在 Tarjan 算法中为每个结点
dfn[u] u low[u] u Subtree(u) low[u] dfn Subtree(u) Subtree(u)
一个结点的子树内结点的 dfn 都大于该结点的 dfn。
从根开始的一条路径上的 dfn 严格递增,low 严格非降。
按照深度优先搜索算法搜索的次序对图中所有的结点进行搜索。在搜索过程中,对于结点
v v low[v] low[u] u v v u v low dfn[v] low[u] v v
将上述算法写成伪代码:
TARJAN_SEARCH(int u)
vis[u]=true
low[u]=dfn[u]=++dfncnt
push u to the stack
for each (u,v) then do
if v hasn't been search then
TARJAN_SEARCH(v) // 搜索
low[u]=min(low[u],low[v]) // 回溯
else if v has been in the stack then
low[u]=min(low[u],dfn[v])
对于一个连通分量图,我们很容易想到,在该连通图中有且仅有一个
因此,在回溯的过程中,判定
实现¶
int dfn[N], low[N], dfncnt, s[N], in_stack[N], tp;
int scc[N], sc; // 结点 i 所在 scc 的编号
int sz[N]; // 强连通 i 的大小
void tarjan(int u) {
low[u] = dfn[u] = ++dfncnt, s[++tp] = u, in_stack[u] = 1;
for (int i = h[u]; i; i = e[i].nex) {
const int &v = e[i].t;
if (!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if (in_stack[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if (dfn[u] == low[u]) {
++sc;
while (s[tp] != u) {
scc[s[tp]] = sc;
sz[sc]++;
in_stack[s[tp]] = 0;
--tp;
}
scc[s[tp]] = sc;
sz[sc]++;
in_stack[s[tp]] = 0;
--tp;
}
}
时间复杂度
Kosaraju 算法¶
Kosaraju 算法依靠两次简单的 DFS 实现。
第一次 DFS,选取任意顶点作为起点,遍历所有未访问过的顶点,并在回溯之前给顶点编号,也就是后序遍历。
第二次 DFS,对于反向后的图,以标号最大的顶点作为起点开始 DFS。这样遍历到的顶点集合就是一个强连通分量。对于所有未访问过的结点,选取标号最大的,重复上述过程。
两次 DFS 结束后,强连通分量就找出来了,Kosaraju 算法的时间复杂度为
实现¶
// g 是原图,g2 是反图
void dfs1(int u) {
vis[u] = true;
for (int v : g[u])
if (!vis[v]) dfs1(v);
s.push_back(u);
}
void dfs2(int u) {
color[u] = sccCnt;
for (int v : g2[u])
if (!color[v]) dfs2(v);
}
void kosaraju() {
sccCnt = 0;
for (int i = 1; i <= n; ++i)
if (!vis[i]) dfs1(i);
for (int i = n; i >= 1; --i)
if (!color[s[i]]) {
++sccCnt;
dfs2(s[i]);
}
}
Garbow 算法¶
应用¶
我们可以将一张图的每个强连通分量都缩成一个点。
然后这张图会变成一个 DAG(为什么?)。
DAG 好啊,能拓扑排序了就能做很多事情了。
举个简单的例子,求一条路径,可以经过重复结点,要求经过的不同结点数量最多。
推荐题目¶
buildLast update and/or translate time of this article,Check the history
editFound smelly bugs? Translation outdated? Wanna contribute with us? Edit this Page on Github
peopleContributor of this article OI-wiki
translateTranslator of this article Visit the original article!
copyrightThe article is available under CC BY-SA 4.0 & SATA ; additional terms may apply.